Energy homeostasis and gastric emptying in ghrelin knockout mice.

نویسندگان

  • B De Smet
  • I Depoortere
  • D Moechars
  • Q Swennen
  • B Moreaux
  • K Cryns
  • J Tack
  • J Buyse
  • B Coulie
  • T L Peeters
چکیده

To elucidate the role of endogenous ghrelin in the regulation of energy homeostasis and gastric emptying, ghrelin knockout mice (ghrelin(-/-)) were generated. Body weight, food intake, respiratory quotient, and heat production (indirect calorimetry), and gastric emptying ((14)C breath test) were compared between ghrelin(+/+) and ghrelin(-/-) mice. In both strains, the effect of exogenous ghrelin on gastric emptying and food intake was determined. Ghrelin(-/-) mice showed some subtle phenotypic changes. Body weight gain and 24-h food intake were not affected, but interruption of the normal light/dark cycle triggered additional food intake in old ghrelin(+/+) but not in ghrelin(-/-) mice. Exogenous ghrelin increased food intake in both genotypes with a bell-shaped dose-response curve that was shifted to the left in ghrelin(-/-) mice. During the dark period, young ghrelin(-/-) mice had a lower respiratory quotient, whereas their heat production was higher than that of the wild-type littermates, inferring a leaner body composition of the ghrelin(-/-) mice. Absence of ghrelin did not affect gastric emptying, and the bell-shaped dose-response curves of the acceleration of gastric emptying by exogenous ghrelin were not shifted between both strains. In conclusion, ghrelin is not an essential regulator of food intake and gastric emptying, but its loss may be compensated by other redundant inputs. In old mice, meal initiation triggered by the light/dark cue may be related to ghrelin. In young animals, ghrelin seems to be involved in the selection of energy stores and in the partitioning of metabolizable energy between storage and dissipation as heat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ghrelin and PYY in the regulation of energy balance and metabolism: lessons from mouse mutants.

Effective control of body weight and energy homeostasis requires stringent regulation of caloric intake and energy expenditure. Gut-brain interactions comprise a central axis for the control of energy homeostasis by integrating the intake of nutrients with an effective utilization of ingested calories either by storage or by expenditure as cellular fuel. Ghrelin, a stomach-derived peptide, is t...

متن کامل

SIRT1 inhibits the mouse intestinal motility and epithelial proliferation.

Sirtuin 1 (SIRT1), a NAD(+)-dependent histone deacetylase, is involved in a wide array of cellular processes including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is unknown whether SIRT1 plays any physiological role in the regulation of intestinal homeostasis and motility. Thus the aim was to define SIRT1 expression and function in the ...

متن کامل

Sensing of Fatty Acids for Octanoylation of Ghrelin Involves a Gustatory G-Protein

BACKGROUND Ghrelin is an important regulator of energy--and glucose homeostasis. The octanoylation at Ser(3) is essential for ghrelin's biological effects but the mechanisms involved in the octanoylation are unknown. We investigated whether the gustatory G-protein, α-gustducin, and the free fatty acid receptors GPR40 and GPR120 are involved in the fatty acid sensing mechanisms of the ghrelin ce...

متن کامل

Intracerebroventricular urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats

PURPOSE Urocortin 3 is a key neuromodulator in the regulation of stress, anxiety, food intake, gut motility, and energy homeostasis, while ghrelin elicits feeding behavior and enhances gastric emptying, adiposity, and positive energy balance. However, the interplays between urocortin 3 and ghrelin on food intake and gastric emptying remain uninvestigated. METHODS We examined the differential ...

متن کامل

Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin.

BACKGROUND/AIMS The gastric peptide ghrelin, an endogenous ligand for growth-hormone secretagogue receptor, has two major molecular forms: acylated ghrelin and desacyl ghrelin. Acylated ghrelin induces a positive energy balance, while desacyl ghrelin has been reported to be devoid of any endocrine activities. The authors examined the effects of desacyl ghrelin on energy balance. METHODS The a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 316 1  شماره 

صفحات  -

تاریخ انتشار 2006